datacarriere.com

Practical Guide for LLMs in the Financial Industry Introduction

Nieuws
02-01-2025
Brian Pisaneschi
This paper serves as a starting point for financial professionals and organizations looking to integrate LLMs into their workflows. It provides a broad overview of various financial LLMs and techniques available for their application, exploring how to select, evaluate, and deploy these tools effectively.

Large language models (LLMs) are advanced artificial intelligence (AI) models trained to understand and generate human-like text based on vast datasets, often containing millions or even billions of sentences. At the core of LLMs are deep neural networks that learn patterns, relationships, and contextual nuances in language. By processing sequences of words, phrases, and sentences, these models can predict and generate coherent responses, answer questions, create summaries, and even carry out complex, specialized tasks. 

In the financial industry, the adoption of LLMs is still in its early stages, but interest is rapidly growing. Financial institutions are beginning to explore how these models can enhance various processes, such as analyzing financial reports, automating customer service, detecting fraud, and conducting market sentiment analysis. While some organizations are experimenting with these technologies, widespread integration is limited due to such factors as data privacy concerns, regulatory compliance, and the need for specialized fine-tuning to ensure accuracy in finance-specific applications.

In response to these challenges, many organizations are adopting a hybrid approach that combines frontier large-scale LLMs with retrieval-augmented generation (RAG) systems.1  This approach leverages the strengths of LLMs for general language understanding while incorporating domain-specific data through retrieval mechanisms to improve accuracy and relevance. However, the value of smaller, domain-specific models remains significant, especially for tasks requiring efficient processing or where data privacy and regulatory compliance are of utmost concern. These models offer tailored solutions that can be fine-tuned to meet the stringent demands of the financial industry, providing a complementary alternative to larger, more generalized systems.

[....]

Lees verder op: CFA institute

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
EY
Marktconform
Medior, Senior
Amsterdam
As a Senior Manager Finance Data & Analytics (including AI) at EY you advise CFOs, lead finance data/AI transformations, translate requirements into data-driven solutions, and deliver analytics, dashboards, forecasting and...
EY
Marktconform
Medior
Amsterdam
Als Manager Privacy & Responsible AI - Cyber Security bij EY adviseer en leid je transformaties rond privacy, AI, cybersecurity en risk; je vertaalt EU-wetgeving (AVG, EU AI Act) naar...
Rijksvastgoedbedrijf
4.691 - 6.907
Medior
Den Haag
Als Adviseur datamanagement bij het Rijksvastgoedbedrijf ondersteun je de Data Officer met organisatiebreed databeleid, vertaal je richtlijnen naar oplossingen, verbeter je datakwaliteit en coördineer je dashboards, governance-workshops en advies aan...
Gemeente Den Haag
5.303 - 7.163
Senior
Den Haag
Als Coördinator BI & Dataplatform bij de gemeente Den Haag coördineer je self-service BI en doorontwikkeling van het BI-ecosysteem/Urban Data Platform, verbind je teams en stakeholders, stuur je updates en...