datacarriere.com

Practical Guide for LLMs in the Financial Industry Introduction

Nieuws
02-01-2025
Brian Pisaneschi
This paper serves as a starting point for financial professionals and organizations looking to integrate LLMs into their workflows. It provides a broad overview of various financial LLMs and techniques available for their application, exploring how to select, evaluate, and deploy these tools effectively.

Large language models (LLMs) are advanced artificial intelligence (AI) models trained to understand and generate human-like text based on vast datasets, often containing millions or even billions of sentences. At the core of LLMs are deep neural networks that learn patterns, relationships, and contextual nuances in language. By processing sequences of words, phrases, and sentences, these models can predict and generate coherent responses, answer questions, create summaries, and even carry out complex, specialized tasks. 

In the financial industry, the adoption of LLMs is still in its early stages, but interest is rapidly growing. Financial institutions are beginning to explore how these models can enhance various processes, such as analyzing financial reports, automating customer service, detecting fraud, and conducting market sentiment analysis. While some organizations are experimenting with these technologies, widespread integration is limited due to such factors as data privacy concerns, regulatory compliance, and the need for specialized fine-tuning to ensure accuracy in finance-specific applications.

In response to these challenges, many organizations are adopting a hybrid approach that combines frontier large-scale LLMs with retrieval-augmented generation (RAG) systems.1  This approach leverages the strengths of LLMs for general language understanding while incorporating domain-specific data through retrieval mechanisms to improve accuracy and relevance. However, the value of smaller, domain-specific models remains significant, especially for tasks requiring efficient processing or where data privacy and regulatory compliance are of utmost concern. These models offer tailored solutions that can be fine-tuned to meet the stringent demands of the financial industry, providing a complementary alternative to larger, more generalized systems.

[....]

Lees verder op: CFA institute

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
SVB
4.198 - 5.497
Medior
Amstelveen
Als Testspecialist Mainframe bij SVB ben je verantwoordelijk voor het schrijven, beoordelen en uitvoeren van testplannen en scripts. Je draagt bij aan een moderniseringsprogramma, verbetert testprocessen, en communiceert met ontwikkelaars...
CM.com
3.150 - 5.500
Medior
Amsterdam, Breda, Tilburg
As an AI Specialist at CM.com, you'll drive innovation by integrating advanced AI solutions like Inspire and Halo for client success. Combine technical expertise with strategic client interaction to transform...
Infomedics
Marktconform
Junior, Medior
Almere
Als Medior Data Engineer bij Infomedics werk je aan het ontsluiten, structureren en optimaliseren van data voor klanten. Je bouwt aan ons dataplatform, ontwikkelt schaalbare oplossingen in Azure en werkt...
Top vacature
Zorg en Zekerheid
4.795 - 7.726
Medior
Leiden
Als Programmamanager AI bij ons energiek zorgverzekeraar, leid je een meerjarig AI-programma van start tot finish. Je ontwikkelt een visie, vertaalt deze naar een roadmap, en realiseert AI-use cases die...